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Higher-Order Image Co-segmentation
Wenguan Wang and Jianbing Shen, Senior Member, IEEE

Abstract—A novel interactive image cosegmentation algorithm
using likelihood estimation and higher order energy optimization
is proposed for extracting common foreground objects from a
group of related images. Our approach introduces the higher
order clique’s, energy into the cosegmentation optimization process
successfully. A region-based likelihood estimation procedure is first
performed to provide the prior knowledge for our higher order
energy function. Then, a new cosegmentation energy function
using higher order cliques is developed, which can efficiently
cosegment the foreground objects with large appearance variations
from a group of images in complex scenes. Both the quantitative
and qualitative experimental results on representative datasets
demonstrate that the accuracy of our cosegmentation results is
much higher than the state-of-the-art cosegmentation methods.

Index Terms—Energy optimization, higher order cliques, image
cosegmentation, likelihood estimation.

I. INTRODUCTION

IMAGE co-segmentation is commonly referred as jointly par-
titioning multiple images into foreground and background

components. The idea of co-segmentation is first introduced by
Rother et al. [5] where they simultaneously segment common
foreground objects from a pair of images. The co-segmentation
problem has attracted much attention in the last decade, most
of the co-segmentation approaches [2], [3], [8], [10], [13], [18],
[23], [24] are motivated by traditional Markov Random Field
(MRF) based energy functions, which are generally solved by
the optimization techniques such as linear programming [8],
dual decomposition [18] and network flow model [10]. The
main reason may be that the graph-cuts and MRF methods [4],
[33] work well for image segmentation and are also widely
used to solve the combinatorial optimization problems in mul-
timedia processing. Similar rationale is also adopted by some
co-saliency methods [9], [42], [44].

The existing image co-segmentation methods can be roughly
classified into two main categories, including unsupervised co-
segmentation techniques and interactive co-segmentation ap-
proaches. The common idea of the unsupervised techniques
[5], [11], [16], [22], [27], [29], [35], [37] formulates image co-
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segmentation as an energy minimization and binary labeling
problem. These approaches usually define the energy function
using standard MRF terms and histogram matching term. The
former encourages the consistent segmentations in every sin-
gle image while the later penalizes the differences between the
foreground histograms of multiple images.

Inspired by interactive single-image segmentation methods
[7], [15], [26], several interactive co-segmentation approaches
[17], [19], [21], [28] using user scribbles have been proposed
in recent years. The user usually indicates scribbles of fore-
ground or background as additional constraint information to
improve the co-segmentation performance. These interactive co-
segmentation approaches can handle a group of related images
and improve the co-segmentation results by user scribbles. Batra
et al. [19], [21] proposed an interactive image co-segmentation
approach to segment foreground objects with user interactions.
They learned foreground/background appearance models using
user scribbles. Recently, Collins et al. [28] formulated the in-
teractive image co-segmentation problem as the random walk
model and added the consistency constraint between the ex-
tracted objects from a set of input images. Their method utilized
the normalized graph Laplacian matrix and solved the random
walk optimization scheme by exploiting its quasi-convexity of
foreground objects.

This study formulates the interactive image co-segmentation
problem in terms of the higher-order energy optimization, which
complements the existing MRF segmentation framework and
improves the accuracy of co-segmenting the challenging images
with foreground objects that have variations in color and texture
only by a few of user seeds. Higher-order energy optimization
[12], [14], [20], [25], [31], [32], [34], [41] has been widely used
in many fields of computer vision like image denoising [14] and
single-image segmentation [12], [34]. We construct higher-order
clique as a composed group of three parts: the foreground region,
the background region and the over-segmentation region, which
considers the correspondence between the over-segmentation
region and the labeled region. This strategy makes our frame-
work effective enough in realistic scenarios, instead of a simple
foreground/background appearance histogram model. Addition-
ally, our higher-order energy efficiently utilizes the statistical in-
formation on a group of pixels by estimating the segmentation
quality on higher-order cliques.

As shown in Fig. 1, the interactive co-segmentation results by
our higher-order energy achieve more accurate results than pre-
vious approaches, especially when foreground and background
contain similar colors. The co-segmentation results by random
walk co-segmentation (RWCS) method [28] [see Fig. 1(b) and
(c)] can not extract the correct foreground objects of planes
in this complex scene. Compared to the existing interactive
co-segmentation methods using low-order energy function,
our high-order energy function optimizes the co-segmentation
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Fig. 1. Co-segmentation comparisons in complex scenes. (a) The input images and user scribbles. (b) and (c) are the co-segmentation results and masks using
the interactive RWCS algorithm [28]. (d) and (e) are the co-segmentation results and masks by our algorithm. (f) The ground-truth. Note that our co-segmentation
method achieves better performance than the RWCS approach in [28] with the same user scribbles.

process by utilizing richer statistical information of nat-
ural images and object relationship by our likelihood
estimation. This strategy greatly improves the performance of
our co-segmentation results [see Fig. 1(d) and (e)]. Our source
code will be available online.1

Compared to existing image co-segmentation methods, the
proposed approach offers the following contributions.

1) We formulate the interactive image co-segmentation via
likelihood estimation and high-order energy optimiza-
tion, which utilizes the region likelihoods of multiple im-
ages and considers the quality of segmentation to achieve
promising co-segmentation performance.

2) A novel higher-order clique construction method is pro-
posed using the estimated foreground/background regions
and the regions of original images.

3) A new region likelihood estimation method is presented,
which provides enough prior information for higher-order
energy item for generating final co-segmentation results.

The rest of the paper is organized as follows. Our proposed
co-segmentation method with high-order energy term and how
to reduce its order is described in detail in Section II. The ex-
perimental results are provided in Section III to support the
efficiency of our proposed algorithm. Finally, Section IV con-
cludes the paper and gives the future work.

II. OUR APPROACH

A. Overview

Our co-segmentation procedure includes two main steps. The
first step is a fast but effective likelihood estimation process,
which calculates the probabilities of pixels belonging to fore-

1[Online]. Available: http://github.com/shenjianbing/hoecoseg

ground/background over entire dataset according to user scrib-
bles. The estimated likelihood offers a rough estimation for
foreground /background and is fed into next step as prior knowl-
edge. This process is described in Section II-B. In the second
stage, a higher-order energy based co-segmentation function is
proposed to obtain final accurate co-segmentation results on a
group of images, which is based on higher order cliques. Our
higher-order cliques are constructed from a set of foreground
and background regions by user scribbles, where all the regions
in each image are matched to produce better co-segmentation
performance. Additionally, our approach considers the quality
of segmentation in higher-order energy to obtain more accurate
estimations of foreground/background. We present this part in
Section II-C.

B. Likelihood Estimation

Given a group of images {I1 , . . . , In} and the user scribbles
that indicate foreground or background objects, we first com-
pute pixel likelihood xi

k for foreground/background in image
Ii . The likelihood of pixel xi

k is denoted by πi
k,l where l is

a label indicating foreground (1) or background (0) and k is
the index value of xi

k . We compute the likelihoods of regions
instead of pixels for computational efficiency. Each input im-
age Ii of the group is divided into regions ri

s ∈ Ri using the
over-segmentation methods such as mean shift [1] or efficient
graph [6] method. For each region ri

s , the region likelihoods of
foreground and background are defined as zi

s,l , which is further
formulated in a quadratic energy function as follows:

F i
l = F1 + F2

= λi

N (Ri )∑

s=1

(zi
s,l − εi

s,l)
2 +

N (Ri )∑

s,s ′=1

wi
s,s ′ (zi

s,l − zi
s ′,l

)2 (1)
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where the first term F1 defines an unary constraint that each
region tends to have the initial likelihood εi

s,l estimated through
the appearance similarity to foreground/background. The sec-
ond term F2 gives the interactive constraint that all regions of
the whole image should have same likelihood when their repre-
sentative colors are similar.

The parameter λ is a positive coefficient for balancing the rel-
ative influence between F1 and F2 . wi

s,s ′ = exp(−‖ci
s − ci

s ′ ‖) is
a weighting function that gives a similarity measure for regions
ri
s and ri

s ′ in color space, and ci
s is the mean color of region

ri
s . N(Ri) is the number of regions of Ri and the parameter

zi
s,l indicates the likelihood of region ri

s . εi
s,l defines the initial

likelihood for region ri
s .

Given the user scribbles, we can get the background region
set uj ∈ U (0) and foreground region set uj ′ ∈ U (1) . We use
the shortest Euclidean distance between region ri

s and the back-
ground/foreground region set (U 0 /U 1) in color space to compute
the initial likelihood εi

s,l for region ri
s . The initial likelihood εi

s,l

is formulated as

εi
s,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
uj ∈U 0

(‖ ci
s − cj‖)

min
uj ∈U 0

(‖ ci
s − cj‖) + min

uj ′ ∈U 1
(‖ ci

s − cj ′ ‖) if l = 1

min
uj ′ ∈U 1

(‖ ci
s − cj ′ ‖)

min
uj ∈U 0

(‖ ci
s − cj‖) + min

uj ′ ∈U 1
(‖ ci

s − cj ′ ‖) if l = 0

(2)

where cj (cj ′ ) is the mean color of background region uj (fore-
ground region uj ′ ).

Based on the region likelihoods �z i
l = [z i

s,l ]N (R i )×1 and their
initial region likelihoods �ε i

l = [ε i
s,l ]N (R i )×1 , the quadratic en-

ergy function Fl is formulated as the following matrix forms:

F i
l = (�z i

l − �ε i
l )

T Λ i(�z i
l − �ε i

l ) + �ziT
l (D i − W i)�z i

l (3)

where W i = [w i
s,s ′ ]N (R i )×N (R i ) and D i = diag([d i

1 , . . . ,

d i
N (R i ) ]). The diagonal elements of the metric D i

are the degrees of the weight matrix W i : d i
s =

∑N (R i )
s ′=1

w i
s,s ′ . The diagonal elements of the metric Λ i are

diag([λ i , . . . , λ i ])N (R i )×N (R i ) .
(3) is then solved by the following convex optimization:

∂F i
l

∂�z i
l

= Λ i(�z i
l − �ε i

l ) + (D i − W i)�z i
l = 0. (4)

After solving (4), we finally obtain the region likelihoods �z i
l

as follows:

�z i
l =

Λ i�ε i
l

Λ i + D i − W i
. (5)

Considering the definition of ε i
s,l in (2), we have ε i

s,0 + ε i
s,1 =

1. According to ε i
s,0 + ε i

s,1 = 1 and (5), we have

z i
s,0 + z i

s,1 = 1. (6)

We only need to calculate either �z i
0 or �z i

1 using (5). (5) is
easily computed by least-square and the optimization only takes
0.02 s for 500 over-segmentation regions per image in our tests.

After the region likelihood �z i
l is obtained, the pixel likelihood

π i
k,l is set to the same value as the likelihood of the region that

this pixel belongs to

π i
k,l = z i

sk ,l

where sk indicates the region r i
sk that pixel xi

k belongs to.

C. Higher-Order Energy Co-Segmentation

Via our likelihood estimation, we have a fast and rough esti-
mate for foreground/background in each image. For generating
more accurate co-segmentation results, we further propose a
higher-order energy based co-segmentation function.

In order to simultaneously segment a group of input images
{I1 , . . . , In} with the labeled images T , we first build a global
term Eglobal(I1 , . . . , In , T ) to match all the images with the
labeled images T . The proposed energy of our co-segmentation
algorithm is expressed as follows:

F =
n∑

i=1

(
ε i
1E

i
unary + ε i

2E
i
pairwise

)
+ Eglobal(I1 , . . . , In , T )

(7)
where E i

unary and E i
pairwise denote unary term and pairwise

term respectively and the global term Eglobal is proposed to
match all the input images {I1 , . . . , In} with labeled images T .
The scalars ε weight various terms.

The unary term E i
unary and the pairwise term E i

pairwise for
image I i are defined as follows:

E i
unary =

∑

k

−log(π i
k,1) · φ(xi

k )−log(π i
k,0) · (1 − φ(xi

k ))

E i
pairwise =

∑

k,k ′ ∈ℵ

‖c i
k − c i

k ′ ‖ · |φ(xi
k ) − φ(xi

k ′)| (8)

where c i
k denotes the color value of pixel xi

k and π i
k,l is obtained

in our likelihood estimation step. The set ℵ contains all the
four-neighbors within one image. φ(xi

k ) is a binary function
indicating the assignment of pixel xi

k to the background (0) or
foreground (1).

The unary term E i
unary is based on the likelihood estimation

results and penalizes assignments of pixels with lower likelihood
to foreground. The pairwise term E i

pairwise imposes intra-image
label smoothness by constraining the segmentation labels to be
consistent, which tends to assign the same label to neighboring
pixels that have similar color.

The co-segmentation model in (7) is intuitive. Next we
discuss how to design the global energy item in the following
paragraphs. Previous co-segmentation approaches [5], [10]
performed co-segmentation on image pairs and made simple
assumption that two input images shared a same/similar fore-
ground object. In contrast, we try to extract common foreground
objects that have large variations in color, texture and shape
from a group of images with complex background. Rather than
building a simple foreground or background appearance model,
we collect a region set of foreground/background according to
user interaction. The region set � of foreground/background
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Fig. 2. Illustration of obtaining the region set� from user seeds. In the top row,
the middle image is one of the labeled images T . The scribble seeds are shown in
close-ups, where the red (green) seeds denote the foregrounds (backgrounds).
In the bottom row, the middle image denotes the over-segmentation results.
Close-ups represent the labeled regions U l which are extracted from these
over-segmentations according to user seeds.

consists of the labeled regions Ul

� = {U 0 , U 1}

where U 0 /U 1 means the background/foreground regions
respectively.

The construction process of � is accomplished by the pre-
vious likelihood estimation step, and all the regions with user
scribbles are added into this region set�. Fig. 2 gives the process
of obtaining the region set � from user seeds. In order to build
the matching relationships between input images {I1 , . . . , In}
and labeled foreground/background images T , our solution is
to make the matching process between the over-segmentation
regions Ri of image I i and the labeled regions from region set
�. Then we define the following higher-order energy item:

Eglobal(I1 , . . . , In , T ) =
n∑

i=1

Ehigh(Ri,�). (9)

By associating with (8) and (9), our co-segmentation energy
function F in (7) is then rewritten as

F =
n∑

i=1

{ ∑

k

(
exp−π i

k , 1 φ(xi
k ) + exp−π i

k , 0 (1 − φ(xi
k ))

)

+
∑

k,k ′ ∈ℵ

‖c i
k − c i

k ′ ‖ · |φ(xi
k ) − φ(xi

k ′)|

+Ehigh(Ri,�)
}

. (10)

The minimization of unary term and pairwise term in F (11)
can be efficiently solved by the graph cut algorithm. Then we
focus on how to design the higher-order term Ehigh(Ri,�) of
I i . We will introduce the higher-order cliques into matching
process. The higher-order cliques are composed of three
regions: the foreground region, the background region and the
over-segmentation region. The co-segmentation process using

Fig. 3. Illustration of the higher-order cliques. In the second row, higher-order
cliques (v1 , v2 , v3 ) are constructed by the labeled regions from region set � and
the over-segmentation region from images. Labeled images T (top row) provide
the labeled regions U1 /U0 to build the region set �, where the foreground
regions U1 (background regions U0 ) are shown in the red (green) rectangles.
Input images {I1 , . . . , In } (third row) are over-segmented into regions shown
in blue rectangles. The final co-segmentation results are given in the bottom
row.

higher-order energy is shown in Fig. 3. Both the foreground
region and the background region are selected to construct our
region set �. Then we build an higher-order energy function
Ehigh(Ri,�) on higher-order cliques as follows:

ν i
s = {r i

s , u1(r i
s ), u0(r i

s )} (11)

where ul(r i
s ) ∈ Ul denotes the most related foreground or

background region to r i
s in Euclidean distance measurement

using their mean colors.
For each region r i

s of image I i , our algorithm finds the most
similar foreground and background region from � respectively
to make up a higher-order clique. Then the matching energy
function using our higher-order cliques is defined as follows:

Ehigh(Ri,�) =
N (R i )∑

s=1

N(ν i
s ) · κi

s (12)

where N(ν i
s ) indicates the number of pixels in clique ν i

s , which
means a large clique will have a large value of weight. κi

s defines
the matching coefficient which considers both the clique likeli-
hood for foreground/background and the segmentation quality.
We define the matching coefficient κi

s as follows:

κi
s = min

{
min

l

(
zl(ν i

s ) · ϑl(ν i
s ) + zl(ν i

s )
)

, 1
}

(13)

where zl(ν i
s ) is the clique likelihood estimated from ν i

s , which
is compute via

zl(ν i
s ) =

N(r i
s )z i

s,l + N(u1(r i
s ))l + N(u0(r i

s ))(1 − l)
N(r i

s ) + N(u1(r i
s )) + N(u0(r i

s ))
.

(14)
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The parameter ϑl(ν i
s ) in (13) is used to estimate the segmenta-

tion quality, which is based on region consistency assumption.
The region consistency assumption encourages all pixels be-
longing to a region to take the same label. We define ϑl(ν i

s ) as
follows:

ϑl(ν i
s ) =

N(r i
s ) − Nl(r i

s )
ρN(r i

s )
, 0 < ρ < 1 (15)

where Nl(r i
s ) is the number of pixels assigned to fore-

ground/background in region r i
s . We commonly set ρ = 0.1

in our experiments. That means, if more than 90% of the pixels
in region r i

s are classified into foreground, the value of ϑ1(ν i
s )

is less than 1. Similarly, if 50% of the pixels in region r i
s are

classified into foreground, the value of ϑ1(ν i
s ) is set to 5.

According to definition in (15), the more pixels of a region
have the same label, the better segmentation quality on this
region and the smaller value of ϑl(ν i

s ) will be. Our higher-order
energy function in (13) is a linear truncated function, which
means that the higher-order energy function allows some pixels
of a region to take different labels.

In clique ν i
s , we only need to consider the segmentation

quality on region r i
s because pixels in region u1(r i

s ) or u0(r i
s )

have been classified into foreground or background. Therefore,
the more pixels in region r i

s are divided into a same label, the
higher segmentation quality is obtained and the lower the value
of ϑl(ν i

s ). From (14) and (15), we can find that the number
of pixels in foreground/background N(ul(r i

s )) can influence
the clique likelihood and the value of matching coefficient κi

s .
Then we set N(ul(r i

s )) = 0.5N(r i
s )ε i

s,l . If region r i
s is closer

to foreground, ε i
s,1 is larger and N(u1(r i

s )) will make a greater
influence on the matching coefficient κi

s .
Higher-order energy function in (13) utilizes clique likelihood

zl(ν i
s ) for foreground and background. The region consistency

in our higher-order clique is also taken into account as an eval-
uation for segmentation quantity (ϑl(ν i

s )). In other words, our
higher-order energy function considers the similarity between
higher-order clique and foreground/background, which encour-
ages all the pixels of a region to take the same label. Next we
will introduce our optimization method for higher-order energy
in (13). Because the value of Nl(r i

s ) is constant, the problem
of minimizing our higher-order energy function can be trans-
formed into a problem of minimizing the matching coefficient
κi

s , which is defined in the following two important theorems.
Theorem 1: The matching coefficient κi

s in (13) can be
rewritten as

κi
s = min

{∑
x i

s ∈r i
s φ(x i

s )

Q
(1 − t) + t,

N(r i
s ) −

∑
x i

s ∈r i
s
φ(xi

s )

Q
t + (1 − t), 1

}
(16)

where t = z1(νs) i , Q = ρN(r i
s ), and pixel xi

s belongs to re-
gion r i

s . φ(·) is the binary function indicating the assignment of
pixel to background (0) or foreground (1) in (8).

Theorem 2: The matching coefficient κi
s in (16) can be trans-

formed into a second-order function by introducing the auxiliary

binary variables σ0 and σ1

κi
s = min Ψ(σ0 , σ1 , φ(xi

s ))

= min
σ0 ,σ1

σ0

∑
x i

s ∈r i
s
φ(xi

s )

Q
(1 − t) + (1 − σ0)(1 − t)

+σ1
N(r i

s ) −
∑

x i
s ∈r i

s
φ(xi

s )

Q
t + (1 − σ1)t. (17)

The proofs of Theorem 1 and Theorem 2 are given in detail in
Appendix A and Appendix B. Through Theorem 1 and Theorem
2, the matching coefficients κi

s in (13) can be rewritten as a
second-order function. Therefore, our higher-order energy based
co-segmentation function in (7) can be efficiently solved by the
conventional graph cut algorithm.

III. EXPERIMENTAL RESULTS

In this section, we first discuss our experiments for eval-
uating the performance between our algorithm and previous
well-known co-segmentation approaches [16], [21], [22], [27],
[28], [35]–[38], [40]. Then, we give qualitative and quantita-
tive results obtained by the proposed method with and without
the higher-order energy. The experimental evaluations are de-
signed to assess the running time statistics of these algorithms.
Then, we give qualitative and quantitative results obtained by
the proposed method with and without the higher-order energy.
The experimental evaluations are designed to assess the running
time statistics of these algorithms. Three parameters λ, ε1 and ε2
are used in our two energy functions (1) and (7). We empirically
set λ = 10, ε1 = 1 and ε2 = 30 for all the test image sets in our
experiments.

A. Co-segmentation Results

Our method is first compared with the state-of-the-art in-
teractive co-segmentation methods: intelligent scribble guided
co-segmentation (ICOSEG) [21], and RWCS [28] on previous
benchmark datasets. To achieve a relatively fair comparison,
both the proposed method and other interactive co-segmentation
methods [21], [28] use the same scribbles in all experiments.

In the experiments, we collect a variety of image groups
from well-known image databases such as iCoseg dataset [21]
and Microsoft MSRC database [30]. These two datasets are
very popular for image co-segmentation experiments where the
ground-truth segmentation masks are also provided. Each group
of image collections has a common theme or common fore-
ground object, which makes it challenging to co-segment them
with user scribble seeds.

We then quantitatively compare the co-segmentation per-
formance of our algorithm with other eight unsupervised ap-
proaches: discriminative clustering co-segmentation (DCCS)
[16], multi-class co-segmentation (MCCS) [27], distributed
co-segmentation (DCS) [22], region matching based co-
segmentation (RMCS) [35], consistent functional maps based
co-segmentation (CFCS) [36], joint object discovery and seg-
mentation (JODS) [37], multi-class joint segmentation (MJS)
[38], and multiple random walkers based co-segmentation
(MRCS) [40]. The experimental results by DCCS, MCCS,
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Fig. 4. Comparison results. (a) shows the scribbles that ICOSEG used in [21]; (b) gives the results by ICOSEG method using the scribbles in (a); (c) shows
our scribbles; (d) shows co-segmentation results by RWCS approach [28] using the scribble seeds in (c); (e) shows the ground truth masks; and (f) shows
co-segmentation results by our algorithm using the scribble seeds in (c). Our algorithm achieves better co-segmentation results than both the ICOSEG [21] and
RWCS [28] algorithms.

and DCS are produced by directly running the implementa-
tion codes from their websites. And the co-segmentation results
of ICOSEG are generated by the implementation code from
the authors [21]. The experimental results of JODS are down-
loaded from their websites. The results by RMCS, CFCS, MJS
and MRCS are mainly borrowed from original works, therefore
only parts of these results are reported.

Fig. 4 gives a comparison between our algorithm and two
well-known interactive co-segmentation approaches: ICOSEG
[21] and RWCS [28] for a group of challenging images. The
group of Brown bear images is a relatively difficult group in
iCoseg dataset. From the co-segmentation results by ICOSEG,
we can see that most of regions of the common objects are gen-
erally segmented {see Fig. 4(b)]. However, there are still many

background regions of which color is similar to foreground are
classified falsely [see Fig. 4(b)]. The reason is that the estab-
lished common appearance model does not work well when the
color distributions of foreground and background pixels across
the entire dataset have too many overlaps.

Another important interactive co-segmentation method is
the RWCS [28] using random walker algorithm [39], [43] as
its optimization framework. Based on their appearance model
with foreground objects, their algorithm achieves better co-
segmentation results [see Fig. 4(d)] than the ICOSEG method
[see Fig. 4(b)]. However, the similarity between foreground
and background color histograms still influences the perfor-
mance of RWCS, which may lead to the incorrect segmentation
of some foreground regions. Compared with the ground truth
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Fig. 5. Comparison co-segmentation results between our method and ICOSEG [21], RWCS [28] approaches. The first row shows the input images. The results
in the second and third rows are obtained by ICOSEG [21] and RWCS [28], respectively. The results in the fourth row are generated by our method. The ground
truth masks are shown in the bottom row.

masks [see Fig. 4(e)], there are still many regions of bears can
not be correctly classified and segmented out by RWCS method
[see Fig. 4(d)]. It is clear that our method produces high-quality
co-segmentation results of foreground bears, while the results
by both ICOSEG and RWCS have more or less lost some im-
portant foreground regions. Our approach builds labeled region
set instead of using foreground/background appearance model.
That makes our method do not rely on the strong assumption
that the foreground objects share a common appearance model.
Therefore, our algorithm is more applicable and robust in real-
istic and complicated scenarios, which achieves more satisfying
results using fewer scribbles [see Fig. 4(c)] than ICOSEG [see
Fig. 4(a)].

In order to further demonstrate the advantage of our algo-
rithm, we present a more challenging co-segmentation example
for a group of images where both background and foreground
are complex in Fig. 5. There are some overlaps between the color
distributions of the foreground and background. For example,
the color of the chair in the third column is very similar with the
color of background trees. ICOSEG [21] and RWCS [28] can-
not handle this situation well (see the second row and the third
row of Fig. 5), while our approach successively co-segments
the foreground object (see the fourth row of Fig. 5). Moreover,
our method preserves more details of co-segmentation objects
than the results by the ICOSEG and RWCS approaches, es-
pecially the chair regions. Our approach fully considers the
region consistency in higher-order cliques and performs the
co-segmentation optimization process on both foreground and
background region set.

We quantitatively evaluate the co-segmentation results on
both the iCoseg dataset and MSRC dataset so as to examine

the overall performance of the proposed method. The iCoseg
dataset consists of 38 groups with totally 643 images that each
group has a common theme or foreground object, and we ran-
domly selected 30 groups of them to perform our experiments.
The performance is measured by the proportion of correctly
classified labeled pixels (both foreground and background) to
the total number of pixels. Fig. 6 summarizes the segmentation
accuracy for each class of iCoseg dataset. This figure clearly
shows that our algorithm has better performance than other co-
segmentation methods. Our overall precision (98.2%) shows
significant improvement over other co-segmentation methods.
For the per-class precision, we can find that our performance
is also better than others. It is also seen that the other methods
achieve good performance, since most of the common objects
that contain similar color distributions in the iCoseg dataset.
Therefore, we further make comparison among our algorithm
and those methods on MSRC dataset, which consists of many
complex scenes and the foregrounds/backgrounds have high ap-
pearance variations. The MSRC dataset consists of 20 groups of
images from natural scenes and we randomly select 14 groups of
them. Several categories including high variability images lead
to significant difficulties while our method still offers substantial
improvements in co-segmentation results. We list the precision
statistics for each class in Table I. The experiment results in
Table I well demonstrate that our method outperforms the state-
of-the-art co-segmentation methods on the challenging MSRC
dataset. Benefitting from successfully integrating the likelihood
estimation and higher-order cliques into our framework, the
average precision of our algorithm on MSRC reaches 95.7%,
which is much higher than the average precisions by ICOSEG
(74.8%) and the ones by RWCS (81.1%).
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Fig. 6. Comparison results of segmentation accuracy on iCoseg dataset between our co-segmentation method and other co-segmentation approaches (DCCS
[16], MCCS [27], and DCS [22], RMCS [35], CFCS [36], JODS [37], and MRCS [40]) and interactive approaches (ICOSEG [21] and RWCS [28]).

TABLE I
SEGMENTATION ACCURACY ON MSRC DATASET BETWEEN OUR CO-SEGMENTATION ALGORITHM AND THE EXISTING STATE-OF-THE-ART CO-SEGMENTATION

APPROACHES (DCCS [16], MCCS [27], DCS [22], ICOSEG [21], RWCS [28], RMCS [35], CFCS [36], JODS [37], AND MJS [38])

supervised unsupervised

class images Ours Ours (-Eg lo b a l ) ICOSEG RWCS DCCS MCCS DCS RMCS CFCS JODS MJS

MSRC bike 30 90.1 81.2 74.1 78.1 63.9 68.3 29.9 62.4 - 79.6 51.2
bird 34 98.9 86.3 86.9 85.7 65.8 73.7 25.6 - 95.8 93.2 55.7
car 30 95.9 83.9 72.1 79.9 76.7 79.0 52.9 59.2 83.1 85.6 72.9
cat 24 97.8 89.2 78.3 75.8 63.2 75.2 38.4 77.1 94.5 91.8 65.9

chair 30 96.8 85.3 71.2 66.7 75.2 67.8 72.0 - - 88.2 46.5
cow 30 99.7 89.1 82.2 75.6 79.8 85.7 83.2 81.6 94.3 97.7 68.4
dog 30 98.6 90.2 75.5 84.0 76.0 75.9 36.5 - 91.3 90.9 55.8
face 30 88.0 85.5 82.5 85.1 77.4 75.1 56.4 84.3 - 89.2 60.9

flower 32 98.4 82.7 83.5 86.3 70.0 68.9 33.8 - - 88.2 67.2
house 30 97.7 89.5 73.2 82.4 62.6 59.0 56.8 - - 89.7 56.6
plane 30 94.6 89.5 30.9 92.0 49.4 52.1 56.6 77.0 91.0 87.0 52.2
sheep 30 99.2 93.2 92.5 89.6 89.3 91.5 88.7 - 95.6 94.8 72.2
sign 30 94.9 89.5 78.3 92.0 80.5 76.7 60.8 - - 95.2 59.1
tree 30 89.6 80.3 65.9 62.1 67.0 85.0 72.6 - - 87.8 62.0
Avg. - 95.7 86.8 74.8 81.1 71.2 73.9 54.6 73.6 92.2 89.9 60.4

Higher values are better. The best and the second best results are boldfaced and underlined, respectively.

B. Effect of Higher-Order Energy

In this section, we present quantitative and qualitative results
for demonstrating the performance improvement of our algo-
rithm after using higher-order cliques energy.

In Table I, we present a baseline, called Ours (−Eglobal),
which indicates the co-segmentation results on MSRC dataset
without considering higher-order term Eglobal in (7). It is clear
that our full approach using higher-order cliques optimiza-
tion gains higher segmentation accuracy. Fig. 7 gives an in-
tuitive comparison of the co-segmentation results with and

without the higher-order energy of our algorithm. Our algo-
rithm can be divided into two stages, likelihood estimation and
co-segmentation using higher-order energy function. The initial
co-segmentation results by our likelihood estimation stage are
shown in Fig. 7(c) where the estimated likelihood maps are also
shown in Fig. 7(b). A pixel xi

k belongs to foreground when its
foreground likelihood π i

k,l > 0.5. As shown in Fig. 7(b) and (c),
the initial co-segmentation results by our likelihood estimation
only extract the rough foreground objects of panda where the
likelihood estimation is not correct in many regions. These ini-
tial co-segmentation results are greatly improved and then more
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Fig. 7. Improvement for our method through higher-order cliques. (a) The input images; (b) the map of likelihood estimation (in this map, the more white
colors that a region has, the higher possibility that the region belongs to foreground); (c) co-segmentation results by our likelihood estimation; (d) co-segmentation
results by our method without higher-order cliques energy, which means we only use the unary item and pairwise item without higher-order item of (9);
(e) co-segmentation results by our full method with higher-order energy optimization; and (f) the ground truth masks.

accurate co-segmentation results [see Fig. 7(e)] are obtained
after we perform our higher-order energy optimization. The es-
timated likelihood maps are also treated as the prior knowledge
in our higher-order optimization process. To see the merit of
our higher-order energy item Eglobal(I1 , . . . , In , T ) in (9), we
give the comparisons of co-segmentation results with and with-
out our higher-order energy item in Fig. 7(d) and (e). The same
unary term Eunary and pairwise term Epairwise in (8) are used to
produce the comparison results [see Fig. 7(d) and (e)]. The seg-
mentation results consistently demonstrate that our higher-order
cliques are helpful in producing high-quality segmentations.

C. Run-Time Statistics

We compare the runtime with ICOSEG [21] and RWCS [28]
under the same computer configuration: Intel Xeon E5-2609
@2.50GHz with 64GB RAM. Table II reports the average run-
ning time on iCoseg dataset [21] and MSRC dataset [30]. Our
approach is faster than the other two methods. We can observe
that with an increase in the number of images in the group,
the running time of our method only increases linearly. We
further analyze the computational complexity of our algorithm.

TABLE II
AVERAGE RUNNING TIME (SECOND) ON ICOSEG

(TOP 10 ROWS) AND MSRC (BOTTOM 10 ROWS)

Datasets Images Ours ICOSEG[21] RWCS[28]

HotBalloons 24 1056.8 2753.2 10 845.3
Kendo 30 1213.8 3087.5 13 361.4
Monks 17 748.2 1047.0 7023.9
StatueofLiberty 41 1745.3 3236.0 23 316.1
Windmill 18 812.1 1165.0 10 530.5
Bear 19 867.4 1391.2 7326.9
Cheetah 33 1211.30 2315.1 14 218.3
Goose 31 1136.4 1865.8 13 350.7
Panda 24 1004.5 1875.7 11 483.6
Stonehenge 18 785.4 1176.8 9971.0

bike 30 312.8 2864.6 3476.3
bird 32 349.2 2671.3 3796.2
car 30 310.7 2130.0 3243.9
cat 24 243.9 1582.6 2932.7
chair 30 363.4 1654.3 3399.6
cow 30 369.5 2129.2 3221.4
dog 30 324.7 2215.5 3648.6
flower 32 383.1 4379.6 3723.1
house 30 370.3 1799.3 3408.1
sheep 30 318.5 1895.7 3038.8
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The complexity of our likelihood estimation process is about
O(

∑n
i=1 [N(Ri)]2), where N(Ri) indicates the number of re-

gions in Ri . Our higher-order energy function can be solved for
each image individually and the higher-order cliques are opti-
mized as a second-order function which can be solved by the
conventional graph cut algorithm. Therefore, the complexity of
higher-order co-segmentation step is about O(

∑n
i=1 [N(I i)]2),

where N(I i) is the number of pixels in I i . The complexity of
our full co-segmentation algorithm is about O(

∑n
i=1 [N(I i)]2),

since N(I i) � N(Ri). Therefore, the run-time of our method
increases only linearly with additional images.

IV. CONCLUSION

We have presented a novel interactive co-segmentation ap-
proach using the likelihood estimation and high-order energy
optimization to extract the complicated foreground objects from
a group of related images. A likelihood estimation method is
developed to compute the prior knowledge for our higher-order
co-segmentation energy function. Our higher-order cliques are
built on a set of foreground and background regions obtained by
likelihood estimation. Then our co-segmentation process from
a group of images is performed at the region level through our
higher-order cliques energy optimization. The energy function
of our higher-order cliques can be further transformed into a
second-order boolean function and thus the traditional graph
cuts method can be used to solve them exactly.

The experimental results demonstrated both qualitatively and
quantitatively that our method has achieved more accurate co-
segmentation results than previous unsupervised and interac-
tive co-segmentation methods, even though the foreground and
background have many overlap regions in color distributions or
in very complex scenes.

APPENDIX A
PROOFS OF (16)

Theorem 1: The matching coefficient κi
s in (13) can be written

as

κi
s = min

{∑
x i

s ∈r i
s φ(x i

s )

Q
(1 − t) + t,

N(r i
s ) −

∑
x i

s ∈r i
s
φ(xi

s )

Q
t + (1 − t), 1

}
(18)

where t = z1(ν i
s ), Q = ρN(r i

s ), and xi
s indicates the pixels

belonging to region r i
s .

Proof: From (14), we have the property as

z0(ν i
s ) + z1(ν i

s ) = 1. (19)

Considering the definition of Nl(r i
s ) in (15), we have

N0(r i
s ) + N1(r i

s ) = N(r i
s )

N1(r i
s ) =

∑

x i
s ∈r i

s

φ(xi
s ) (20)

where Nl(r i
s ) is the number of pixels assigned to fore-

ground/background in region r i
s .

Considering (19) and (20) and the definition of matching
coefficient κi

s in (13), we then obtain the solution as

κi
s = min

{∑
x i

s ∈r i
s
φ(xi

s )

Q
(1 − t) + t,

N(r i
s ) −

∑
x i

s ∈r i
s
φ(xi

s )

Q
t + (1 − t), 1

}

where t = z1(ν i
s ) , Q = ρN(r i

s ), and xi
s indicates the pixels

belonging to region r i
s .

APPENDIX B
PROOFS OF (17)

Theorem 2: The matching coefficient κi
s in (16) can be trans-

formed into a second-order function by introducing binary vari-
ables σ0 and σ1

κi
s = min Ψ(σ0 , σ1 , φ(xi

s ))

= min
σ0 ,σ1

σ0

∑
x i

s ∈r i
s
φ(xi

s )

Q
(1 − t) + (1 − σ0)(1 − t)

+σ1
N(r i

s ) −
∑

x i
s ∈r i

s
φ(xi

s )

Q
t + (1 − σ1)t. (21)

Proof: When binary variables σ0 and σ1 take all the possible
values, there are 22 solutions and we can rewrite the above
function Ψ(σ0 , σ1 , φ(xi

s )) as
Ψ(σ0 , σ1 , φ(xi

s )) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
φ(x i

s )
Q

(1 − t) + t if σ0 = 1, σ1 = 0

N (r i
s ) −

∑
φ(x i

s )
Q

t + (1 − t) if σ0 = 0, σ1 = 1
∑

φ(x i
s )

Q
(1 − t) +

N (r i
s ) −

∑
φ(x i

s )
Q

t if σ0 = 1, σ1 = 1

1 if σ0 = 0, σ1 = 0.
(22)

When
∑

x i
s ∈r i

s
φ(xi

s ) > Q, we can get

∑
φ(xi

s )
Q

(1−t)+
N(r i

s )−
∑

φ(xi
s )

Q
t >

∑
φ(xi

s )
Q

(1−t)+t.

(23)

When
∑

x i
s ∈r i

s
φ(xi

s ) < N(r i
s ) − Q, we will have the follow-

ing property:

∑
φ(xi

s )
Q

(1 − t) +
N(r i

s ) −
∑

φ(xi
s )

Q
t

>
N(r i

s ) −
∑

φ(xi
s )

Q
t + (1 − t). (24)

Combining (22), (23) and (24), the matching coefficient κi
s in

(16) can be transformed into the following second-order energy
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function:

κi
s = min Ψ(σ0 , σ1 , φ(xi

s ))

= min
σ0 ,σ1

σ0

∑
x i

s ∈r i
s
φ(xi

s )

Q
(1 − t) + (1 − σ0)(1 − t)

+σ1
N(r i

s ) −
∑

x i
s ∈r i

s
φ(xi

s )

Q
t + (1 − σ1)t. (25)

REFERENCES

[1] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5,
pp. 603–619, May 2002.

[2] Z. Lou and T. Gevers, “Extracting primary objects by video co-
segmentation,” IEEE Trans. Multimedia, vol. 16, no. 8, pp. 2110–2117,
Dec. 2014.

[3] C. Wang, Y. Guo, J. Zhu, L. Wang, and W. Wang, “Video object co-
segmentation via subspace clustering and quadratic pseudo-boolean opti-
mization in an MRF framework,” IEEE Trans. Multimedia, vol. 16, no. 4,
pp. 903–916, Jun. 2014.

[4] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2,
pp. 147–159, Feb. 2004.

[5] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation of
image pairs by histogram matching-incorporating a global constraint into
MRFs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2006, pp. 993–
1000.

[6] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image seg-
mentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, 2004.

[7] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient n-d image seg-
mentation,” Int. J. Comput. Vis., vol. 70, no. 2, pp. 109–131, 2006.

[8] L. Mukherjee, V. Singh, and C. R. Dyer, “Half-integrality based algorithms
for cosegmentation of images,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Jun. 2009, pp. 2028–2035.

[9] W. Wang, J. Shen, and L. Shao, “Consistent video saliency using local
gradient flow optimization and global refinement,” IEEE Trans. Image
Process., vol. 24, no. 11, pp. 4185–4196, Nov. 2015.

[10] D. S. Hochbaum and V. Singh, “An efficient algorithm for cosegmenta-
tion,” in Proc. IEEE Int. Conf. Comput. Vis., Sep.-Oct. 2009, pp. 269–276.

[11] H. Fu, D. Xu, S. Lin, and J. Liu, “Object-based RGBD image co-
segmentation with Mutex constraint,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2015, pp. 4428–4436.

[12] P. Kohli, L. Ladicky, and P. Torr, “Robust higher order potentials for
enforcing label consistency,” Int. J. Comput. Vis., vol. 82, no. 3, pp. 302–
324, 2009.

[13] W. Wang, J. Shen, X. Li, and F. Porikli, “Robust video object co-
segmentation,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3137–
3148, Oct. 2015.

[14] I. Hiroshi, “Higher-order clique reduction in binary graph cut,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2009, pp. 2993–3000.

[15] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman,
“Geodesic star convexity for interactive image segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2010, pp. 3129–3136.

[16] A. Joulin, F. Bach, and J. Ponce, “Discriminative clustering for image
co-segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun.
2010, pp. 1943–1950.

[17] X. Dong, J. Shen, L. Shao, and M. H. Yang, “Interactive co-segmentation
using global and local energy optimization,” IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 3966–3977, Nov. 2015.

[18] S. Vicente, V. Kolmogorov, and C. Rother, “Cosegmentation revisited:
Models and optimization,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 465–
479.

[19] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “iCoseg: Interactive
co-segmentation with intelligent scribble guidance,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2010, pp. 3169–3176.

[20] T. H. Kim, K. M. Lee, and S. U. Lee. “Nonparametric higher-order learning
for interactive segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Jun. 2010, pp. 3201–3208.

[21] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen, “Interactively co-
segmentating topically related images with intelligent scribble guidance,”
Int. J. Comput. Vis., vol. 93, pp. 273–292, 2011.

[22] G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade, “Distributed cosegmentation
via submodular optimization on anisotropic diffusion,” in Proc. IEEE Int.
Conf. Comput. Vis., Nov. 2011, pp. 169–176.

[23] L. Mukherjee, V. Singh, and J. Peng, “Scale invariant cosegmentation for
image groups,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun.
2011, pp. 1881–1888.

[24] K. Chang, T. Liu, and S. Lai, “From co-saliency to co-segmentation:
An efficient and fully unsupervised energy minimization model,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2011,
pp. 2129–2136.

[25] A. C. Gallagher, D. Batra, and D. Parikh, “Inference for order reduction in
Markov random fields,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2011, pp. 1857–1864.

[26] B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, “Multi-task low-rank
affinity pursuit for image segmentation,” in Proc. IEEE Int. Conf. Comput.
Vis., Nov. 2011, pp. 2439–2446.

[27] A. Joulin, F. Bach, and J. Ponce, “Multi-class cosegmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2012, pp. 542–549.

[28] M. D. Collins, J. Xu, L. Grady, and V. Singh, “Random walks based
multi-image segmentation: Quasiconvexity results and GPU-based so-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2012,
pp. 1656–1663.

[29] Y. Chai, V. Lempitsky, and A. Zisserman, “BiCoS: A bi-level co-
segmentation method for image classification,” in Proc. IEEE Int. Conf.
Comput. Vis., Nov. 2011, pp. 2579–2586.

[30] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost: Joint
appearance, shape and context modeling for multi-class object recog-
nition and segmentation,” in Proc. Eur. Conf. Comput. Vis., 2006,
pp. 1–15.

[31] H. Ishikawa, “Higher-order vlique reduction in binary graph cut,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2009, pp. 2993–3000.

[32] H. Ishikawa, “Transformation of general binary MRF minimization to the
first order case,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6,
pp. 1234–1249, Jun. 2011.

[33] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watersheds: A
new image segmentation framework extending graph cuts, random walker
and optimal spanning forest,” in Proc. IEEE Int. Conf. Comput. Vis., Sep.-
Oct. 2009, pp. 731–738.

[34] K. Park and S. Gould, “On learning higher-order consistency potentials
for multi-class pixel labeling,” in Proc. Eur. Conf. Comput. Vis., 2012,
pp. 202–215.

[35] J. Rubio, J. Serrat, A. Lopez, and N. Paragios, “Unsupervised co-
segmentation through region matching,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2012, pp. 749–756.

[36] F. Wang, Q. Huang, and L. Guibas, “Image co-segmentation via consis-
tent functional maps,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 849–856.

[37] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu, “Unsupervised joint object
discovery and segmentation in internet images,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2013, pp. 1939–1946.

[38] F. Wang, Q. Huang, M. Ovsjanikov, and L. J. Guibas, “Unsupervised
multi-class joint image segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2014, pp. 3142–3149.

[39] J. Shen, Y. Du, W. Wang, and X. Li, “Lazy random walks for superpixel
segmentation,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1451–1462,
Apr. 2014.

[40] C. Lee, W.-D. Jang, J.-Y. Sim, and C.-S. Kim, “Multiple random walk-
ers and their application to image cosegmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2015, pp. 3837–3845.

[41] H. Zhu, J. Lu, J. Cai, J. Zheng, and N. Thalmann, “Multiple foreground
recognition and cosegmentation: An object-oriented CRF model with ro-
bust higher-order potentials,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis., Mar. 2014, pp. 485–492.

[42] H. Fu, X. Cao, and Z. Tu, “Cluster-based co-saliency detection,”
IEEE Trans. Image Process., vol. 22, no. 10, pp. 3766–3778,
Oct. 2013.

[43] X. Dong, J. Shen, and L. Shao, “Sub-Markov random walk for image
segmentation,” IEEE Trans. Image Process., vol. 25, no. 2, pp. 516–527,
Feb. 2016.

[44] X. Cao, Z. Tao, B. Zhang, H. Fu, and W. Feng, “Self-adaptively weighted
co-saliency detection via rank constraint,” IEEE Trans. Image Process.,
vol. 23, no. 9, pp. 4175–4186, Sep. 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


